Msx1/Bmp4 genetic pathway regulates mammalian alveolar bone formation via induction of Dlx5 and Cbfa1
نویسندگان
چکیده
In the developing mammalian tooth, the cranial neural crest derived dental mesenchyme consists of the dental papilla and dental follicle. The dental papilla gives rise to odontoblasts and dental pulp and the dental follicle gives rise to the periodontium, including the osteoblasts that contribute to the alveolar process. The alveolar process is a specialized intramembranous bone that forms the primary support structure for the dentition. The Msx1 gene controls many aspects of craniofacial development, as evidenced by craniofacial abnormalities seen in Msx1(-/-) mice, including the arrest of tooth development and the absence of the alveolar bone. Previous studies demonstrated that ectopic expression of Bmp4, a downstream target of Msx1, in the Msx1(-/-) dental mesenchyme rescued alveolar bone formation. Here we confirm an early requirement of BMP activity for alveolar bone formation. We show that the expression of Cbfa1 and Dlx5, two genes encode transcription factors that are critical for bone differentiation, overlaps with that of Msx1 and Bmp4 in the developing tooth and alveolar process. We have demonstrated that Dlx5 and Cbfa1 expression is down-regulated in Msx1(-/-) dental mesenchyme and that Msx1 and Bmp4 expression are unaltered in Cbfa1(-/-) mice. These data place Dlx5 and Cbfa1 downstream from the Msx1/Bmp4 in the genetic pathway that regulates tooth development. Ectopic expression of Bmp4 in Msx1 mutants restores the expression of Dlx5, but not Cbfa1, in the dental mesenchyme, and rescues the expression of both Dlx5 and Cbfa1 in the developing alveolar bone. Therefore, the early expression of Cfba1 in the dental mesenchyme appears dispensable for the development of the alveolar bone. Taken together with in vitro gene induction studies, our results demonstrate that BMP4 controls Dlx5 expression in dental mesenchyme, and functions upstream to both Dlx5 and Cbfa1 to regulate alveolar bone formation during tooth development.
منابع مشابه
Msx1 and Dlx5 act independently in development of craniofacial skeleton, but converge on the regulation of Bmp signaling in palate formation
Msx and Dlx homeoproteins control the morphogenesis and organization of craniofacial skeletal structures, specifically those derived from the pharyngeal arches. In vitro Msx and Dlx proteins have opposing transcriptional properties and form heterodimeric complexes via their homeodomain with reciprocal functional repression. In this report we examine the skeletal phenotype of Msx1; Dlx5 double k...
متن کاملDigit regeneration is regulated by Msx1 and BMP4 in fetal mice.
The regeneration of digit tips in mammals, including humans and rodents, represents a model for organ regeneration in higher vertebrates. We had previously characterized digit tip regeneration during fetal and neonatal stages of digit formation in the mouse and found that regenerative capability correlated with the expression domain of the Msx1 gene. Using the stage 11 (E14.5) digit, we now sho...
متن کاملEndogenous Msx1 antisense transcript: in vivo and in vitro evidences, structure, and potential involvement in skeleton development in mammals.
Msx1 is a key factor for the development of tooth and craniofacial skeleton and has been proposed to play a pivotal role in terminal cell differentiation. In this paper, we demonstrated the presence of an endogenous Msx1 antisense RNA (Msx1-AS RNA) in mice, rats, and humans. In situ analysis revealed that this RNA is expressed only in differentiated dental and bone cells with an inverse correla...
متن کاملMsx1 controls inductive signaling in mammalian tooth morphogenesis.
Members of the Msx homeobox family are thought to play important roles in inductive tissue interactions during vertebrate organogenesis, but their precise developmental function has been unclear. Mice deficient for Msx1 exhibit defects in craniofacial development and a failure of tooth morphogenesis, with an arrest in molar tooth development at the E13.5 bud stage. Because of its potential for ...
متن کاملTransgenically ectopic expression of Bmp4 to the Msx1 mutant dental mesenchyme restores downstream gene expression but represses Shh and Bmp2 in the enamel knot of wild type tooth germ
Bmp4 is a downstream gene of Msx1 in early mouse tooth development. In this study, we introduced the Msx1-Bmp4 transgenic allele to the Msx1 mutants in which tooth development is arrested at the bud stage in an effort of rescuing Msx1 mutant tooth phenotype in vivo. Ectopic expression of a Bmp4 transgene driven by the mouse Msx1promoter in the dental mesenchyme restored the expression of Lef-1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 120 شماره
صفحات -
تاریخ انتشار 2003